Oversampling for the Multiscale Finite Element Method

نویسندگان

  • Patrick Henning
  • Daniel Peterseim
چکیده

This paper reviews standard oversampling strategies as performed in the multiscale finite element method (MsFEM). Common to those approaches is that the oversampling is performed in the full space restricted to a patch including coarse finite element functions. We suggest, by contrast, performing local computations with the additional constraint that trial and test functions be linear independent from coarse finite element functions. This approach reinterprets the variational multiscale method in the context of computational homogenization. This connection gives rise to a general fully discrete error analysis for the proposed multiscale method with constrained oversampling without any resonance effects. In particular, we are able to give the first rigorous proof of convergence for an MsFEM with oversampling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Order Multiscale Finite Element Method for Elliptic Problems

In this paper, a new high-order multiscale finite element method is developed for elliptic problems with highly oscillating coefficients. The method is inspired by the multiscale finite element method developed in [3], but a more explicit multiscale finite element space is constructed. The approximation space is nonconforming when oversampling technique is used. We use a PetrovGalerkin formulat...

متن کامل

Multiscale Finite Element Methods for Nonlinear Problems and Their Applications

In this paper we propose a generalization of multiscale finite element methods (MsFEM) to nonlinear problems. We study the convergence of the proposed method for nonlinear elliptic equations and propose an oversampling technique. Numerical examples demonstrate that the oversampling technique greatly reduces the error. The application of MsFEM to porous media flows is considered. Finally, we des...

متن کامل

An Adaptive Multiscale Finite Element Method

This work is devoted to an adaptive multiscale finite element method (MsFEM) for solving elliptic problems with rapidly oscillating coefficients. Starting from a general version of the MsFEM with oversampling, we derive an a posteriori estimate for the H-error between the exact solution of the problem and a corresponding MsFEM approximation. Our estimate holds without any assumptions on scale s...

متن کامل

An Analytical Framework for Numerical Homogenization. Part II: Windowing and Oversampling

In a recent paper [Multiscale Model. Simul., 5 (2006), pp. 996–1043], the author has introduced an analytical framework to study the convergence properties of some numerical homogenization methods for elliptic problems. In the applications however, these methods are coupled with windowing or oversampling techniques. In the present work, the author addresses this issue within the latter framewor...

متن کامل

Subgrid Upscaling and Mixed Multiscale Finite Elements

Second order elliptic problems in divergence form with a highly varying leading order coefficient on the scale can be approximated on coarse meshes of spacing H only if one uses special techniques. The mixed variational multiscale method, also called subgrid upscaling, can be used, and this method is extended to allow oversampling of the local subgrid problems. The method is shown to be equival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2013